THERMAL RELAXATION AND NONLINEAR MELTING AND EVAPORATION IN
INTENSE ENERGY FLUXES

0. N. Shablovskii UDC 536.42

An analytic study has been made on thermal relaxation in a nonlinear medium show-
ing phase transitions consequent on high-power surface energy sources.

There are many papers on simulating heat transfer in transitions produced by concentrated
energy fluxes; see [1-5] for the state of the art and an extensive bibliography. A major
aspect of high-intensity nonstationary thermal processes is that heat propagates at a finite
rate, which influences the temperature pattern [6, 7], as for example in metal phase transi-
tions at sufficiently high incident fluxes [4, 8]. Various analytic methods have been applied
[8, 13].

I have examined new classes of analytic solution within the framework of a Stefan heat-
transfer treatment for melting and evaporation with allowance for heat-flux relaxation.

1. Initial Equations. We use a dimensionless form for the equations governing one-
dimensional nonstationary heat transfer with relaxation [6, 7]:

Q = MTw/qu% Xty = (Mol 7sy) >

Here T = TTp, a = qgb, etc. The time scale is taken as the heat-flux relaxation period tp =
Y = const, while the dimensionless quantity y = 1 is retained in the formulas for clarity.

We introduce the new argument T = exp(—t/y) and represent (1) as

Qurzzvx; 120, = Qayu,, )
a=MNc, W (T=cT), g=10/y.

2. Nonstationary Melting. We take Q@ = 1, u = yx, v = ¥¢ and replace (2) by a second-
oder differential equation for ¢ = ¥(x, T):

Yor = (aY/TZ) Yoerer (3)

where the thermal diffusivity a is_a function of Yx. We proceed by analogy with [12] and
transfer from (3) to the Monje—Ampere equation by means of the Legendre transformation F(u,

t) = xu — $(x, 1), x = Fy, v = —=F¢, whereupon from [14, 15] we can show that in the case
' a=a/(u+ k)2 u-tk£0, a, k—const C(4)
there is a parametric exact solution for (1):
X (u, Ty =T (0) + [fu/(u + k)], méw+km% (5)
V(W )=~ + e+l e, ay="7, (6)

in which C{(w) is an arbitrary function. There is a marked difference between (5) and (6)
on the one hand and the approximate solutions (local in t) [12] in that the time dependence
is of relaxation type. :

Power-law (k, = 0) and exponential forms (k;n, = c;) can be given for the thermophysical
parameters satisfying (4):
A=MT™, c=0cT" nm+n=—2 hoy=7"hH1+n)% (7)

. 0 (8)
A=A exp(mT), c=c,exp(mT), n +n,=0, Mey=fini.
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For example, for n, < 0, n, > 0, (7) and (8) give A'(T) < 0, ¢'(T) > 0, which correspond
qualitatively to the parameters for molybdenum [16] for T, K € [300, Tm)

We consider nonstationary melting due to a surface heat source [1l, 4] in simplified
form, where the liquid effect is neglected, which is justified at the start, when the liquid
is thin. Exact estimates have been made [17] on the thermal interaction between the liquid
and solid. The boundary conditions are

Xx=x():q=qo u=uy (9)
X=%m(): §=0— Loy(YXm= %m), & = tiy, = const, (10)

in which §=q,+£(), g =const, |k@®)]<ky 0<Fi<<oo.

The solution to (5) and (6) describes the heat transfer between the melting boundary
and the thermal wave w = w, propagating against a relaxing background:

ug 4k = fi/ (x + L), v90 = f1 4 Lol (@) — § (@)], L1, 4 — const. (11)

Conditions (9) and (11) correspond to continuity in the temperature and heat flux at the

front, which moves with speed x',(t) = f,/yw,t, 0 £ t < @, These conditions are met because
w = const gives a family of continuous thermal waves. We derive C(w) from (10), the energy
balance at the phase boundary, whose temperature is the melting point. If uy, + kl > 0, then

(0]
= B'z(m)dw-kcm O == Uy, + ky,
o
z=0"2[R(0) + %.C; + %,C,], # =cosd, u,=sind, A=LIho,
LiR =R+ %R, Ry=FB,—F.Bi—Di, Ry=—FB,+F.B,+ D,
BL; = —[cos A]";0 . By(1+L}) =[o(sinA—Lycos A%, ,
BsLy =[sin A]%, 0 B,(1 4 L}) = [0 (cos A+ L, sin %o 5 (12)

©®

LmFl = —fh Lsz = Ca (le + k]_), Dl = g. lezdm’
b
m

o

D, = } Qrudo, v () = L,Qy (o).
P
m

The symbol [f(y)]}’y0 denoted f(y) — f(y°). When the surface source has constant output or
is specified in terms of elementary functions (whose form can be envisaged from the expres-
sions for z, D,;, and D,), the (12) quadrature can be represented in finite form.

If uy + k; < 0, we have a type (12) relation for {(w), in which %,, and x , are poly-
nomials in w. This form is examined similarly and is omitted here.

We determine the equation of motion and the melting boundary speed from (5) and (12),
which give

m = [/m + )+ T (0n), (13)
N, =N;+Ng+N, (14)
Ny = fillttm 4+ k1 L), 3 (U + ky) Ny = Ly (B cos bt — hy sin bt),
by =Ly, hy=Cyd—CysY, hy=0Cys)+Cis), hy=hy —C,,

N =M+ M, MLy=agy1-+ L(sinbt— Ly cosbt)],

i t
'VLmM =T [%m\ Exym TN A Ry J‘ Rty T Y J’ (15)
0 b .

The first term in (14) is constant, while the second is of relaxation type, and the third
is uniquely related to the surface source output.
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We assume that the boundaries migrate from left to right towards positive x and take
f, > 0. At t = 0, the temperature pattern lies in the segment x € [x,°, %,°], whose ends
are defined by formulas following from (5) and (13):

58, = (Fy by Colm k), X3+ = o, 00 = +ha,
h=—C (0 #§=uf), o ="0(0)+Ln)
O < 61 < m?n/(mronﬁ—*_ Lm) < la 621 63 E (0, 1).

The relation x,° < x,° is ensured by choosing C;. To meet the physically obvious condi-
tion 0 £ N < x'o(t), it is necessary to meet the following bounds in accordance with L1 =
[Cup + k) /Lypl2/2:

L
a) Li>1, —Zi<:h1<:h2<:Lm Ny >max (A, A,),

1

(16)

M=) =6 (Bt k), 8= BB A gy
L, L
B L<l L<h<h<-—* Ni>max@, )
‘ ' (17)

’ L
"l‘km s A2:A3_£z_1—+km-

3

@ (2—Ly)

3

A(1—8)= 61'[

In both cases, (h, — h;)L, = §,L,(L, — 1), ky = 2k,/Ly. Each system in (16) and (17) is non-
conflicting and gives constraints on C,, C,, §,, k,.

Equation (14) describes the effects from the nonstationary surface source on the melting
boundary speed; k(t) may be a nonmonotone bounded function, and then (15) shows that ()
has two components: a monotone (relaxation) one and a nonmonotone one, where lM(t)I £ ky.

The initial pattern x = x°(u), q = q%°(u), x € [x,°, %,°] is represented by (5) and (6)
with T = 1 and is dependent on C,, C,, Cj.

From (1), a time-local partial solution has been obtained [12] for nonstationary melting.
One can assume formally that this applies for any finite interval for which a < «, x,'(t) < =,
and in practice it is best to use it for the interval t € [0, ny] representing a multiple
of several relaxation periods, n £ 5. Let the (11) ahead of the wave at t = 0 occupy a
finite interval [x,°, x,], where we take the right-hand end as u; + k, = 8§;(u,° + k,), and
then in time t, = yn, n = —In §; the wave travles x; — x,° = £,(8537* — 1)/(u,°® + k;), which
is determined by f, and 85. The solution is thus suitable up to t;, at which the wave
reaches x = Xx;.

3. Evaporation. We apply a hodograph transformation (7, 15, 18] to the heat-trans-
port equations in (2) form, i.e., we interchange the dependent and independent variables:

Ty = wa Xy = Qa‘YTD, - (18)
T=1(, V), x=x(, v), a=a(@), *x,T,— %X,1,50.
Usually, this transformation is employed to linearize an initial system composed to two
quasilinear equations homogeneous in the derivatives and has been used effectively in gas
dynamics [18] and transport theory [7] (reversal method). Here (18) remains quasilinear.

An advantage of (18) by comparison with (1) is that the aspect is eliminated on the non-
linearity due to the thermophysical parameters being dependent on temperature.

The evaporation is caused by a surface heat source q = const:

L Axy _ A2, | dxp
= Xm! dt = Sm (Tm)» Im = g + Lm ('\’ At + 7)’ (19)
dx, -~ ( d?x, dx, )
X=X, =S.(T.), qe=Zg— L . (20)
e a e(Te), ¢ ed el ¥ o -+ i

We consider the process between the melting and evaportion boundaries, where we incorporate
the absorptivity and use a kinetic condition [2] relating the speed of each boundary to the
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corresponding transition temperature. We take a stationary temperature distribution and a
relaxing heat flux in the melting zone:
dT, (x
QK(TS)—;T()— =—{qp, Gs=G¢+ T ¢+0.

This assumption is analogous to the simplification in a Stefan treatment [6] in which the
temperature in the phase transition is taken as known and constant.

"1 instead of u and assume that

a=butaP), Z=2Zwu by, Zy—const, TE[Ty, T,l,

a(p) = b, €0, b,Z; 50, 0<B PP <1

We introduce B = u

(21)

.The summation is with respect to the repeated superscript €. For c = const, (21) covers a
linear temperature dependence for the absorptivity and thermal conductivity. We take S(T) =
o(B) as analytic and such that 0 < 0(0) < ». If in particular S = o, exp (-E/T) [2], than
o, = 0o(0) = 0,(0).

We construct the solution to (18) as a functional series:
x=x,Inf+x € P, v=1pT+ 1, (P, >0,
E=[0—w@)]f (). %, T, —const, EEI0, &I, BE(O, 1), (22)
%o = (T/fo) + Loy Ty = hy— 25, %,T4 = B,z
The recurrent relations for n 2 1 are
Xy = BEfn + 1, + Hny, BfSZ—T*, By = vb.fo, o0, (23)
E nC 4
T, = Anfn + BC ( q:n—ldg — (lng +s' Hn—ldg) + A+ En-l’

o
0 0 0

B.C = Tifﬂ? Hy1(0)= Eq (0)=0, Hy=0,
Anf = CE [y + (0, 8/2y)), 0 = &/ —w'f, fg =1,

(24)

(n—1)

Hn—l = Fn—l + An—].(Pn-z - fg ~ (ghn—-l + jGn—ldE)»

n— n—2 E

1
- fan~1 = 2 fix;l_[+ Z Ti'q)n-z'z" Gn—-l = ( Gn—ldgv
i=1 i=1 by

Gn—l - En—2 "—[Tg* (n—l)xn—l/B*] + (Zofn—l/fo)’ (25)

n—1 n—2
— Enul = B;l (TiE PiiXn—i + Z ﬂ'i‘pn—z’—l + 217017*\!371—1 +x*'ﬁn—1) +
i=l1 i=1

n—1 n—

1
+ (bafo)* (b* 2 fir’n~i+z bign—i—l)’
i= =0

4 N
Y, =0, &= 1% Yo = Xyo P = 1%, + 2 Q1 ¥n—i-

=1

The coefficients in the power-series expansion in B for f, ¢, o, and so on are denoted by
the same symbol with appropriate subscripts such as f = £.8%, € 2 0. The E,-,(£), F,-,(&)
are calculated from (25)-type formulas.

This solution contains four arbitrary functions &, h, £, and w together with the argu-
ment B, which enables one to satisfy (19) and (20). We take &, = 0 to get for the first few
coefficients that

Xy = V0o, Wo = V1, Tyl = Y {dy + Opdpn)s 5T, =2 — Xy,
Ty (o + gﬂge) = ydy, Bf1 = Y0y — Oppd — 25, (26)

(wot 8ok.) (20 — o) = voud, -+ 7 @y -+ gife) [y == shy + Y0,
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Gy = Qdo. ZieyTyi - Qdy, d = Lz, T,

The general form for the recurrent formulas is
Wy = Kn—lv ln = Shn—] + X Cn,m + My, My=0, IZ> 1,
n
(%+&®MJ—MQWH=Rmphm+h%+§—0#&

Bgefn - —(%f-ll hn—l = ",VT (Gn,e_- o’n,m) + Pn—l‘
0

The expressions for Kj-;, Mp-1, Py-1s Ry-; are composed of coefficients corresponding to ap-
proximations preceding approximation n; these formulas are not given here. The result
Ee € (0, 1) is defined by 0 < q¢” < », and parameter Q is uniquely related to the arbitrary
constant T,: when we satisfy the initial conditlons at the evaporation boundary Te =1,
%.® = 0, we get 1 = Qug®[1, + 1o(§x)(RO)EF], = 1/ug?. The solution to (22) gives x,°,
up’ and the initial temperature pattern between the phase boundaries.

One can use the Weierstrass—Kovalevskaya majorant method to show that if g(B), o(R),
g € (0, 1) are analytic functions, the series (22)-(24) converge for £ € (0, 1), 8 € (0, 1).
The solution structure indicetes that it is of boundary-layer type nd describes a nonsta-
tionary transition due to thermal relaxation from the initial temperature pattern between
the phase boundaries to the limiting state t »> =,

We see from (22) and (26) that in the simplest approximation

o~ x, InP x4+ 4,8, QTP T,
waxwy+wif, [ fo+fif

one already has information on how the thermal diffusivity varies with u (parameter b,),
the nonlinear absorvity (Z,), the kinetic relations at the phase boundaries (o,, Ep, E e)s
and the thermal conditions in the melting material (q,, q;). The major qualitative regul-
arities in (27) are not altered by incorporating subsequent expansion terms. We subse-

quently put ¢ = const.

(27)

At the phase boundarles, which move slowly, the temperature decreases over time in

a relaxation fashion:
U (T) ¢ (v — Qo) Qry, u(T,) o [T — Q(hy — 26E,)1/QT,,

g, v d, (y02 —urb,), vgr =y, deCo=di—T4q1, T:>>0. (28)

The natural requirements ug > uy > 1, @ > 0 lead to the bounds
byl —4g)) >0, Dy=d, —dy— 0, (dp - d,) + ¢0y (Ee — Epp) >0, (29)
Dy + (dy — v.q) (dy — o) youbg! < 0.
To (29) we must add one of the conditions
a) by<<0, E <&, d=E(0)+dy);

_ (30)
b) 0« b, <‘Y0'%, d*(yo‘%——b*)<§*.

Compatibility between (29) and (30) is provided by suitable choice of d,, d,, q;. The condi-
tion B < 1 will be met if the temperature scale is taken as the value at the melting boundary
for t » o,

The formula.Ne= o, exp (~Egc/ug) for the evaporation boundary speed shows that the asymp-
totic value (t - w) is very much dependent on by, and q,. For 0 < b, < yoo%, if d, — H <
qlt. < d,, then M, = dN.*/db* > 0, while if q,1, < d, — H, then M, < 0; Hyo,? = ¢c,. For
b, <0, if 4, < qy7, < d1 - H, then M, > 0, whlle if qity > 4y — H then M, < 0. This means
that the Ng” set up “during the thermal relaxation and the Np~, whose behavior is analogous,
are dependent on da/du and on dqg/dt, the rate of change in the heat flux in the melting zone.

These results show clearly that thermophysical-parameter nonlinearity has a marked
effect on the nonstationary heat-transfer parameters in the phase transitions.
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NOTATION

Dimensionless quantities: x, Cartesian coordinate; t, time; T, temperature; A, thermal
conductivity; c, bulk specific heat; q, specific heat flux; vy, heat-flux relaxation time;
L, heat of phase transition in unit volume; q, set heat flux density at surface; N, phase
boundary speed; Z, absorptivity; u and v, variables in hodograph plane; s, ==cosAp, Sp==SinA,,
Am=AD 40, Ly = [(tm + k)/Ll'/2, LaLa =991 (tm 4 k1) Lo =Ly (1 - L}), Ly = Li—83 (Li—1), Agyol = 8oLy (L — 1),
8, and 85, arbitrary numbers in the range (0, 1); c, = cby,o,(Eg — Ey). Subscripts and
superscripts: overbars for dimensional quantities; m and e, melting and evaporation phase
boundaries; b, scale for dimensionless quantities; €, summation; 0, initial value; «,
asymptotic (t -+ =) value; prime ordinary differentiation; independent variable as subscript,
partial differentiation.
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